Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 174: 105887, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36209950

RESUMO

We have previously reported that the single transmembrane protein Dipeptidyl Peptidase Like 6 (DPP6) impacts neuronal and synaptic development. DPP6-KO mice are impaired in hippocampal-dependent learning and memory and exhibit smaller brain size. Recently, we have described novel structures in hippocampal area CA1 in aging mice, apparently derived from degenerating presynaptic terminals, that are significantly more prevalent in DPP6-KO mice compared to WT mice of the same age and that these structures were observed earlier in development in DPP6-KO mice. These novel structures appear as clusters of large puncta that colocalize NeuN, synaptophysin, and chromogranin A, and also partially label for MAP2, amyloid ß, APP, α-synuclein, and phosphorylated tau, with synapsin-1 and VGluT1 labeling on their periphery. In this current study, using immunofluorescence and electron microscopy, we confirm that both APP and amyloid ß are prevalent in these structures; and we show with immunofluorescence the presence of similar structures in humans with Alzheimer's disease. Here we also found evidence that aging DPP6-KO mutants show additional changes related to Alzheimer's disease. We used in vivo MRI to show reduced size of the DPP6-KO brain and hippocampus. Aging DPP6-KO hippocampi contained fewer total neurons and greater neuron death and had diagnostic biomarkers of Alzheimer's disease present including accumulation of amyloid ß and APP and increase in expression of hyper-phosphorylated tau. The amyloid ß and phosphorylated tau pathologies were associated with neuroinflammation characterized by increases in microglia and astrocytes. And levels of proinflammatory or anti-inflammatory cytokines increased in aging DPP6-KO mice. We finally show that aging DPP6-KO mice display circadian dysfunction, a common symptom of Alzheimer's disease. Together these results indicate that aging DPP6-KO mice show symptoms of enhanced neurodegeneration reminiscent of dementia associated with a novel structure resulting from synapse loss and neuronal death. This study continues our laboratory's work in discerning the function of DPP6 and here provides compelling evidence of a direct role of DPP6 in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Envelhecimento/patologia , Hipocampo/metabolismo , Sinapses/metabolismo , Camundongos Transgênicos , Proteínas tau/genética , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio/metabolismo
3.
Mol Cell ; 80(5): 779-795.e10, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33207181

RESUMO

Protein aggregates disrupt cellular homeostasis, causing toxicity linked to neurodegeneration. Selective autophagic elimination of aggregates is critical to protein quality control, but how aggregates are selectively targeted for degradation is unclear. We compared the requirements for autophagy receptor proteins: OPTN, NBR1, p62, NDP52, and TAX1BP1 in clearance of proteotoxic aggregates. Endogenous TAX1BP1 is recruited to and required for the clearance of stress-induced aggregates, whereas ectopic expression of TAX1BP1 increases clearance through autophagy, promoting viability of human induced pluripotent stem cell-derived neurons. In contrast, TAX1BP1 depletion sensitizes cells to several forms of aggregate-induced proteotoxicity. Furthermore, TAX1BP1 is more specifically expressed in the brain compared to other autophagy receptor proteins. In vivo, loss of TAX1BP1 results in accumulation of high molecular weight ubiquitin conjugates and premature lipofuscin accumulation in brains of young TAX1BP1 knockout mice. TAX1BP1 mediates clearance of a broad range of cytotoxic proteins indicating therapeutic potential in neurodegenerative diseases.


Assuntos
Proteínas Reguladoras de Apoptose/deficiência , Autofagia , Encéfalo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Proteínas de Neoplasias/deficiência , Doenças Neurodegenerativas/metabolismo , Agregação Patológica de Proteínas/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Encéfalo/patologia , Feminino , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipofuscina/genética , Lipofuscina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Ratos , Ratos Sprague-Dawley , Ubiquitina/genética , Ubiquitina/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-31616371

RESUMO

The analysis of pineal cell biology has undergone remarkable development as techniques have become available which allow for sequencing of entire transcriptomes and, most recently, the sequencing of the transcriptome of individual cells. Identification of at least nine distinct cell types in the rat pineal gland has been made possible, allowing identification of the precise cells of origin and expression of transcripts for the first time. Here the history and current state of knowledge generated by these transcriptomic efforts is reviewed, with emphasis on the insights suggested by the findings.

5.
J Biol Chem ; 294(30): 11498-11512, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31177092

RESUMO

Neurolastin is a dynamin family GTPase that also contains a RING domain and exhibits both GTPase and E3 ligase activities. It is specifically expressed in the brain and is important for synaptic transmission, as neurolastin knockout animals have fewer dendritic spines and exhibit a reduction in functional synapses. Our initial study of neurolastin revealed that it is membrane-associated and partially co-localizes with endosomes. Using various biochemical and cell-culture approaches, we now show that neurolastin also localizes to mitochondria in HeLa cells, cultured neurons, and brain tissue. We found that the mitochondrial localization of neurolastin depends upon an N-terminal mitochondrial targeting sequence and that neurolastin is imported into the mitochondrial intermembrane space. Although neurolastin was only partially mitochondrially localized at steady state, it displayed increased translocation to mitochondria in response to neuronal stress and mitochondrial fragmentation. Interestingly, inactivation or deletion of neurolastin's RING domain also increased its mitochondrial localization. Using EM, we observed that neurolastin knockout animals have smaller but more numerous mitochondria in cerebellar Purkinje neurons, indicating that neurolastin regulates mitochondrial morphology. We conclude that the brain-specific dynamin GTPase neurolastin exhibits stress-responsive localization to mitochondria and is required for proper mitochondrial morphology.


Assuntos
Dinaminas/metabolismo , Mitocôndrias/metabolismo , Células de Purkinje/metabolismo , Animais , Células Cultivadas , Dinaminas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/enzimologia , Mutação , Transporte Proteico
6.
Microporous Mesoporous Mater ; 269: 156-159, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30337835

RESUMO

Double pulsed-field gradient (dPFG) MRI is proposed as a new sensitive tool to detect and characterize tissue microstructure following diffuse axonal injury. In this study dPFG MRI was used to estimate apparent mean axon diameter in a diffuse axonal injury animal model and in healthy fixed mouse brain. Histological analysis was used to verify the presence of the injury detected by MRI.

7.
PLoS One ; 13(10): e0205883, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30347410

RESUMO

The vertebrate pineal gland is dedicated to the production of the hormone melatonin, which increases at night to influence circadian and seasonal rhythms. This increase is associated with dramatic changes in the pineal transcriptome. Here, single-cell analysis of the rat pineal transcriptome was approached by sequencing mRNA from ~17,000 individual pineal cells, with the goals of profiling the cells that comprise the pineal gland and examining the proposal that there are two distinct populations of pinealocytes differentiated by the expression of Asmt, which encodes the enzyme that converts N-acetylserotonin to melatonin. In addition, this analysis provides evidence of cell-specific time-of-day dependent changes in gene expression. Nine transcriptomically distinct cell types were identified: ~90% were classified as melatonin-producing α- and ß-pinealocytes (1:19 ratio). Non-pinealocytes included three astrocyte subtypes, two microglia subtypes, vascular and leptomeningeal cells, and endothelial cells. α-Pinealocytes were distinguished from ß-pinealocytes by ~3-fold higher levels of Asmt transcripts. In addition, α-pinealocytes have transcriptomic differences that likely enhance melatonin formation by increasing the availability of the Asmt cofactor S-adenosylmethionine, resulting from increased production of a precursor of S-adenosylmethionine, ATP. These transcriptomic differences include ~2-fold higher levels of the ATP-generating oxidative phosphorylation transcriptome and ~8-fold lower levels of the ribosome transcriptome, which is expected to reduce the consumption of ATP by protein synthesis. These findings suggest that α-pinealocytes have a specialized role in the pineal gland: efficiently O-methylating the N-acetylserotonin produced and released by ß-pinealocytes, thereby improving the overall efficiency of melatonin synthesis. We have also identified transcriptomic changes that occur between night and day in seven cell types, the majority of which occur in ß-pinealocytes and to a lesser degree in α-pinealocytes; many of these changes were mimicked by adrenergic stimulation with isoproterenol. The cellular heterogeneity of the pineal gland as revealed by this study provides a new framework for understanding pineal cell biology at single-cell resolution.


Assuntos
Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Glândula Pineal/citologia , Análise de Sequência de RNA , Acetilserotonina O-Metiltransferasa/metabolismo , Trifosfato de Adenosina/química , Animais , Análise por Conglomerados , Feminino , Masculino , Melatonina/metabolismo , Glândula Pineal/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Estações do Ano , Serotonina/análogos & derivados , Serotonina/metabolismo , Transcriptoma
8.
Neuroimage ; 135: 333-44, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27126002

RESUMO

We report the development of a double diffusion encoding (DDE) MRI method to estimate and map the axon diameter distribution (ADD) within an imaging volume. A variety of biological processes, ranging from development to disease and trauma, may lead to changes in the ADD in the central and peripheral nervous systems. Unlike previously proposed methods, this ADD experimental design and estimation framework employs a more general, nonparametric approach, without a priori assumptions about the underlying form of the ADD, making it suitable to analyze abnormal tissue. In the current study, this framework was used on an ex vivo ferret spinal cord, while emphasizing the way in which the ADD can be weighted by either the number or the volume of the axons. The different weightings, which result in different spatial contrasts, were considered throughout this work. DDE data were analyzed to derive spatially resolved maps of average axon diameter, ADD variance, and extra-axonal volume fraction, along with a novel sub-micron restricted structures map. The morphological information contained in these maps was then used to segment white matter into distinct domains by using a proposed k-means clustering algorithm with spatial contiguity and left-right symmetry constraints, resulting in identifiable white matter tracks. The method was validated by comparing histological measures to the estimated ADDs using a quantitative similarity metric, resulting in good agreement. With further acquisition acceleration and experimental parameters adjustments, this ADD estimation framework could be first used preclinically, and eventually clinically, enabling a wide range of neuroimaging applications for improved understanding of neurodegenerative pathologies and assessing microstructural changes resulting from trauma.


Assuntos
Algoritmos , Axônios/ultraestrutura , Imagem de Tensor de Difusão/métodos , Interpretação de Imagem Assistida por Computador/métodos , Substância Branca/citologia , Substância Branca/diagnóstico por imagem , Animais , Interpretação Estatística de Dados , Furões , Aumento da Imagem/métodos , Técnicas In Vitro , Masculino , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuições Estatísticas
9.
Hum Mol Genet ; 19(7): 1347-57, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20067919

RESUMO

Smith-Lemli-Opitz syndrome (SLOS) is a malformation syndrome with neurocognitive deficits due to mutations of DHCR7 that impair the reduction of 7-dehydrocholesterol to cholesterol. To investigate the pathological processes underlying the neurocognitive deficits, we compared protein expression in Dhcr7(+/+) and Dhcr7(Delta3-5/Delta3-5) brain tissue. One of the proteins identified was cofilin-1, an actin depolymerizing factor which regulates neuronal dendrite and axon formation. Differential expression of cofilin-1 was due to increased phosphorylation. Phosphorylation of cofilin-1 is regulated by Rho GTPases through Rho-Rock-Limk-Cofilin-1 and Rac/Cdc42-Pak-Limk-Cofilin-1 pathways. Pull-down assays were used to demonstrate increased activation of RhoA, Rac1 and Cdc42 in Dhcr7(Delta3-5/Delta3-5) brains. Consistent with increased activation of these Rho GTPases, we observed increased phosphorylation of both Limk and Pak in mutant brain tissue. Altered Rho/Rac signaling impairs normal dendritic and axonal formation, and mutations in genes encoding regulators and effectors of the Rho GTPases underlie other human mental retardation syndromes. Thus, we hypothesized that aberrant activation of Rho/Rac could have functional consequences for dendrite and axonal growth. In vitro analysis of Dhcr7(Delta3-5/Delta3-5) hippocampal neurons demonstrated both axonal and dendritic abnormalities. Developmental abnormalities of neuronal process formation may contribute to the neurocognitive deficits found in SLOS and may represent a potential target for therapeutic intervention.


Assuntos
Cofilina 1/metabolismo , Síndrome de Smith-Lemli-Opitz/genética , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Axônios/patologia , Encéfalo/metabolismo , Colesterol/deficiência , Dendritos/patologia , Ativação Enzimática , Quinases Lim/metabolismo , Camundongos , Mutação , Fosforilação , Transdução de Sinais , Síndrome de Smith-Lemli-Opitz/patologia
10.
J Neurosci Methods ; 181(2): 212-26, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19454294

RESUMO

Glial cell Ca2+ signals play a key role in glial-neuronal and glial-glial network communication. Numerous studies have thus far utilized cell-permeant and injected Ca2+ indicator dyes to investigate glial Ca2+ signals in vitro and in situ. Genetically encoded fluorescent Ca2+ indicators have emerged as novel probes for investigating cellular Ca2+ signals. We have expressed one such indicator protein, the YC 3.60 cameleon, under the control of the S100beta promoter and directed its expression predominantly in astrocytes and Schwann cells. Expression of YC 3.60 extended into the entire cellular cytoplasmic compartment and the fine terminal processes of protoplasmic astrocytes and Schwann cell Cajal bands. In the brain, all the cells known to express S100beta in the adult or during development, expressed YC 3.60. While expression was most extensive in astrocytes, other glial cell types that express S100beta, such as NG2 and CNP-positive oligodendrocyte progenitor cells (OP cells), microglia, and some of the large motor neurons in the brain stem, also contained YC 3.60 fluorescence. Using a variety of known in situ and in vivo assays, we found that stimuli known to elicit Ca2+ signals in astrocytes caused substantial and rapid Ca2+ signals in the YC 3.60-expressing astrocytes. In addition, forepaw stimulation while imaging astrocytes through a cranial window in the somatosensory cortex in live mice, revealed robust evoked and spontaneous Ca2+ signals. These results, for the first time, show that genetically encoded reporter is capable of recording activity-dependent Ca2+ signals in the astrocyte processes, and networks.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Células de Schwann/metabolismo , Córtex Somatossensorial/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Cerebelo/metabolismo , Potenciais Somatossensoriais Evocados/fisiologia , Corantes Fluorescentes , Ácido Glutâmico/farmacologia , Hipocampo/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Células de Schwann/efeitos dos fármacos , Córtex Somatossensorial/citologia , Córtex Somatossensorial/efeitos dos fármacos
11.
PLoS Genet ; 3(6): e108, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17590087

RESUMO

We observed a severe autosomal recessive movement disorder in mice used within our laboratory. We pursued a series of experiments to define the genetic lesion underlying this disorder and to identify a cognate disease in humans with mutation at the same locus. Through linkage and sequence analysis we show here that this disorder is caused by a homozygous in-frame 18-bp deletion in Itpr1 (Itpr1(Delta18/Delta18)), encoding inositol 1,4,5-triphosphate receptor 1. A previously reported spontaneous Itpr1 mutation in mice causes a phenotype identical to that observed here. In both models in-frame deletion within Itpr1 leads to a decrease in the normally high level of Itpr1 expression in cerebellar Purkinje cells. Spinocerebellar ataxia 15 (SCA15), a human autosomal dominant disorder, maps to the genomic region containing ITPR1; however, to date no causal mutations had been identified. Because ataxia is a prominent feature in Itpr1 mutant mice, we performed a series of experiments to test the hypothesis that mutation at ITPR1 may be the cause of SCA15. We show here that heterozygous deletion of the 5' part of the ITPR1 gene, encompassing exons 1-10, 1-40, and 1-44 in three studied families, underlies SCA15 in humans.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/genética , Deleção de Sequência , Ataxias Espinocerebelares/genética , Animais , Sequência de Bases , Linhagem Celular Transformada , Feminino , Humanos , Receptores de Inositol 1,4,5-Trifosfato/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular
12.
Cell Calcium ; 41(2): 155-67, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16905188

RESUMO

The hypothesis that calcium signaling proteins segregate into lipid raft-like microdomains was tested in isolated membranes of rat oligodendrocyte progenitor (OP) cells and astrocytes using Triton X-100 solubilization and density gradient centrifugation. Western blot analysis of gradient fractions showed co-localization of caveolin-1 with proteins involved in the Ca2+ signaling cascade. These included agonist receptors, P2Y1, and M1, TRPC1, IP3R2, ryanodine receptor, as well as the G protein Galphaq and Homer. Membranes isolated from agonist-stimulated astrocytes showed an enhanced recruitment of phospholipase C (PLCbeta1), IP3R2 and protein kinase C (PKC-alpha) into lipid raft fractions. IP3R2, TRPC1 and Homer co-immunoprecipitated, suggesting protein-protein interactions. Disruption of rafts by cholesterol depletion using methyl-beta-cyclodextrin (beta-MCD) altered the distribution of caveolin-1 and GM1 to non-raft fractions with higher densities. beta-MCD-induced disruption of rafts inhibited agonist-evoked Ca2+ wave propagation in astrocytes and attenuated wave speeds. These results indicate that in glial cells, Ca2+ signaling proteins might exist in organized membrane microdomains, and these complexes may include proteins from different cellular membrane systems. Such an organization is essential for Ca2+ wave propagation.


Assuntos
Sinalização do Cálcio , Cálcio/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microdomínios da Membrana/metabolismo , Neuroglia/metabolismo , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Caveolina 1/metabolismo , Células Cultivadas , Colesterol/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Microdomínios da Membrana/fisiologia , Octoxinol/farmacologia , Ratos , Solubilidade
13.
J Neurosci ; 25(15): 3763-73, 2005 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-15829628

RESUMO

Striatal medium spiny neurons are an important site of convergence for signaling mediated by the neurotransmitters dopamine and glutamate. We report that in striatal neurons in primary culture, signaling through group I metabotropic glutamate receptors (mGluRs) 1/5 and the D1 class of dopamine receptors (DRs) 1/5 converges to increase phosphorylation of the mitogen-activated protein kinase ERK2 (extracellular signal-regulated kinase 2). Induction of mitogen-activated protein kinase kinase-dependent signaling cascades by either mGluR1/5 or DR1/5 gave rise to increases in phosphorylation of ERK2. Coactivation of mGluR1/5 and DR1/5 with (S)-3,5-dihydroxyphenylglycine and (+)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride enhanced the phosphorylation of ERK2. This interaction between mGluR1/5 and DR1/5 required protein kinase C (PKC), because the PKC inhibitors calphostin C, bisindolylmaleimide I, and Gö6976 blocked DR1/5-enhanced phosphorylation of ERK2. Use of the phosphatase inhibitors calyculin and okadaic acid indicated that inhibition of protein phosphatases 1 and 2A dramatically enhanced ERK2 phosphorylation by mGluR1/5. Coactivation of mGluR1/5 and DR1/5 also enhanced cAMP-response element binding protein (CREB) phosphorylation (compared with each receptor agonist alone) but did not enhance CREB-mediated transcriptional activity. Thus, signal transduction pathways activated by DR1/5 and mGluR5 interact to modify downstream events in striatal neurons while retaining numerous regulatory checkpoints.


Assuntos
Corpo Estriado/citologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D1/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Análise de Variância , Animais , Benzazepinas/farmacologia , Benzoatos/farmacologia , Western Blotting , Cálcio/metabolismo , Células Cultivadas , Ácidos Dicarboxílicos/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Interações Medicamentosas , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Imunofluorescência , Glicina/análogos & derivados , Glicina/farmacologia , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Modelos Biológicos , Neurônios/efeitos dos fármacos , Fenilacetatos/farmacologia , Fosforilação , Gravidez , Proteína Quinase C/farmacologia , Ratos , Ratos Sprague-Dawley , Transfecção
14.
Glia ; 39(1): 69-84, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12112377

RESUMO

Astrocytes respond to neuronal activity by propagating Ca(2+) waves elicited through the inositol 1,4,5-trisphosphate pathway. We have previously shown that wave propagation is supported by specialized Ca(2+) release sites, where a number of proteins, including inositol 1,4,5-trisphosphate receptors (IP(3)R), occur together in patches. The specific IP(3)R isoform expressed by astrocytes in situ in rat brain is unknown. In the present report, we use isoform-specific antibodies to localize immunohistochemically the IP(3)R subtype expressed in astrocytes in rat brain sections. Astrocytes were identified using antibodies against the astrocyte-specific markers, S-100 beta, or GFAP. Dual indirect immunohistochemistry showed that astrocytes in all regions of adult rat brain express only IP(3)R2. High-resolution analysis showed that hippocampal astrocytes are endowed with a highly branched network of processes that bear fine hair-like extensions containing punctate patches of IP(3)R2 staining in intimate contact with synapses. Such an organization is reminiscent of signaling microdomains found in cultured glial cells. Similarly, Bergmann glial cell processes in the cerebellum also contained fine hair-like processes containing IP(3)R2 staining. The IP(3)R2-containing fine terminal branches of astrocyte processes in both brain regions were found juxtaposed to presynaptic terminals containing synaptophysin as well as PSD 95-containing postsynaptic densities. Corpus callosum astrocytes had an elongated morphology with IP(3)R2 studded processes extending along fiber tracts. Our data suggest that PLC-mediated Ca(2+) signaling in astrocytes in rat brain occurs predominantly through IP(3)R2 ion channels. Furthermore, the anatomical arrangement of the terminal astrocytic branches containing IP(3)R2 ensheathing synapses is ideal for supporting glial monitoring of neuronal activity.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Canais de Cálcio/biossíntese , Inositol 1,4,5-Trifosfato/metabolismo , Receptores Citoplasmáticos e Nucleares/biossíntese , Sequência de Aminoácidos , Animais , Anticorpos/química , Anticorpos/metabolismo , Astrócitos/química , Sítios de Ligação de Anticorpos , Canais de Cálcio/análise , Canais de Cálcio/imunologia , Cerebelo/citologia , Cerebelo/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Receptores de Inositol 1,4,5-Trifosfato , Masculino , Dados de Sequência Molecular , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/análise , Receptores Citoplasmáticos e Nucleares/imunologia , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...